Keynote Speaker

Tanveer Syeda-Mahmood, Ph.D
IBM Fellow & Chief Scientist, Medical Sieve Readiology Grand Challenge
IBM Almaden Research Center

Dr. Tanveer Syeda-Mahmood is an IBM Fellow and the Chief Scientist/overall lead for the global Medical Sieve Radiology Grand Challenge project in IBM Research. As a worldwide expert in artificial Intelligence for medical imaging and clinical decision support, she is leading the company's future in cognitive health and helping define new IBM products through her groups research in biomedical imaging, computer vision, deep learning, knowledge and reasoning.
Dr. Tanveer Syeda-Mahmood graduated with a Ph.D from the MIT Artificial Intelligence Lab in 1993. Prior to coming to IBM, Dr. Syeda-Mahmood led the image indexing program at Xerox Research and was one of the early originators of the field of content-based image and video retrieval. Over the past 30 years, her research interests have been in a variety of areas relating to artificial intelligence ranging from computer vision, image and video databases, to recent applications in medical image analysis, healthcare informatics and clinical decision support. She has over 250 refereed publications and over 100 filed patents. Dr. Syeda-Mahmood has chaired numerous conferences and workshops over the years at forums such as IEEE CVPR, ICCV, ACM, and MICCAI including MICCAI 2016 (Industrial Chair), IEEE HISB 2011 (General Chair), and IEEE CVPR 2008 (Program Chair). 
Dr. Syeda-Mahmood is a Fellow of IEEE. She is also a member of IBM Academy of Technology. Dr. Syeda-Mahmood was declared Master Inventor in 2011. She is the recipient of key awards including IBM Corporate Award 2015, Best of IBM Award 2015, 2016 and several outstanding innovation awards. In 2016, she received the highest technical honor at IBM and was conferred the title of IBM Fellow. 
Speech Title: Role of Deep Learning and Artificial Intelligence in Clinical Decision Support for Imaging
Abstract: With the advent of new machine learning techniques, the field of automated clinical decision support is poised for a new growth. Previously, the decision support systems have been predominantly rule-based and built on fixed pre-determined associations from clinical knowledge. The IBM AALIM system pioneered a new direction in evidence-based medicine using the concept of patient-data driven learning by exploiting the consensus opinions of other physicians who have looked at similar patients. With the advent of deep learning methods, learning-based decision support can be combined with clinical knowledge-driven techniques to define the next generation of clinical decision support systems.
In this talk, I will discuss the role of deep learning techniques in decision support giving examples in radiology and cardiology imaging. I will also describe the IBM Medical Sieve Radiology Grand Challenge, a worldwide collaborative research effort across IBM research labs that is expanding patient data and knowledge-driven learning to define new clinical decision support systems for radiologists that will one day serve as their cognitive assistants. 



Prof. Hong Shen (沈鸿教授)

国家特聘专家; 中组部"千人计划"入选者; 中国科学院"百人计划"入选者 
Sun Yat-sen University, China

Hong Shen is a specially-appointed endowed professor in Sun Yat-sen University, and also a tenured Professor of Computer Science in the University of Adelaide, Australia. He received the B.Eng. degree from Beijing University of Science and Technology, M.Eng. degree from University of Science and Technology of China, Ph.Lic. and Ph.D. degrees from Abo Akademi University, Finland, all in Computer Science. He was Professor and Chair of the Computer Networks Laboratory in Japan Advanced Institute of Science and Technology (JAIST) during 2001-2006, and Professor of Compute Science at Griffith University, Australia, where he taught 9 years since 1992. With main research interests in parallel and distributed computing, algorithms, data mining, privacy preserving computing and high performance networks, he has led numerous research centers and projects in different countries. He has published 300+ papers including over 100 papers in international journals such as a variety of IEEE and ACM transactions. Prof. Shen received many honors, awards, professorial and executive appointments, and served on different roles in professional societies, journal editorial boards and conference organizations.